A Professional Development Course

for a Chemistry-Infused Quantum Mechanics Curriculum

A. Colantonio, S. Galano, I. Marzoli, <u>U. Scotti di Uccio</u>, I. Testa Università di Napoli Federico II & Università di Camerino

QM is perceived as weird by students

QMB is a project to develop a new teaching-learning sequence for high-school students

This step: the Teachers' training

GIREP-MPTL 2019

Introduction: Context and motivation

Recently QM has been intensified in High School curricula

Quantum Mechanics Basis - QMB is based on a multidisciplinary approach

U. Scotti di Uccio - GIREP-MPTL 2019

Curriculum design: The QMB Sequence

Upper anchor

Theoretical framework: The Teaching Learning Sequences (TLS)

QMB:

Second round of QMB: curricular implementation

2019

1st period 2nd period Training course for teachers Implementation by teachers

U. Scotti di Uccio - GIREP-MPTL 2019

Theoretical frame: Psillos & Kariotoglou (2016)

Theoretical framework: From curriculum in theory to curriculum in use

The ability of an intervention to produce the desired beneficial effect

Curricular implementation

In expert hands under ideal circumstances:EfficacyIn actual use:Effectiveness

Our research: *The fidelity of implementation*

Attitude and Inclination

RQ#1 RQ#2	1. 2.	What are the teachers' perceptions about QMB multidisciplinary approach? To what extent are they prone to accept and actuate the QMB key concepts?
Sample:		Teachers that attended the QMB professional Development Course
Instrume	ents:	 the "Fidelity Poll" questionnaire interviews to teachers

U. Scotti di Uccio - GIREP-MPTL 2019 Theoretical frame: Hall & Loucks (1977), Carol L. O'Donnell (2008), Shkedi (1998)

The Professional Development Course

40 h Professional Development Course

40 h Cooperative Experimentation supporting classroom implementation

Scientific and technological content knowledge

QM basic concepts: from the general rules to the structure of matter

Pedagogical content knowledge

inquiry, experimental evidence-first, representations socioscientific issues, science practices instrument for sequence validation and student's evaluation

Adaptation

how to modify the curriculum and the intervention duration how to chose the deepnings

U. Scotti di Uccio - GIREP-MPTL 2019

The key concepts and practices of QMB

Experiment-first

Active experimentation: the measurement of h

Classical vs. Quantum

The concept of Theory and of its Domain of validity Refuse the "historical approach"

Modern measurements and science practises

Focus on phenomenlogy and socioscientific issues Large use of representations, low math level

2s

RQ#1 Instruments: The "Fidelity Poll" questionnaire

Before classroom implementation

Approval rate on 39 statements in 4 areas

<u>Key issues</u>	How relevant is the ability to interpret <u>re</u> How relevant is to know the <u>technolog</u> ic	epresentations? cal fallouts of QM?			
<u>Contents</u>	How relevant is to show <u>recent results</u> ,	instead of historical ones?			
<u>Approach</u>	I cannot introduce QM without its math	formalism			
<u>Context & Students</u>	Is BMQ more suitable to <u>Chemistry</u> tha My students will comment that <u>QMB is</u>	n to <u>Physics</u> classes? <u>difficult</u>			
/////////Reversed					
	Likert scale	Fidelity Index			
1-10 Likert scale	direct 1 10	"direct" "reversed"			
Both coherent and antithetic state	ements $reverse \xrightarrow{1 10}{\text{accept} refuse} r$	$\mathbf{F} = \sum_{i} \mathbf{d}_{i} + \sum_{j} \left(11 - \mathbf{r}_{j} \right)$			

 $39 \leq F \leq 390$

U. Scotti di Uccio - GIREP-MPTL 2019

RQ#1 Results: the Likert Map of the "Fidelity Poll" questionnaire

Low fidelity

High fidelity

RQ#1 Results: Items average Likert

Marginal distribution #1

of QMB key issues

RQ#1 Results: Teachers average Likert

by design in QMB.

1.

2.

3.

Scattered L

High L

- prepare a lab report with due care of error propagation
- introduce high level math to formalize QM problems •
- verify a theory by experiment

RQ#1 Results: Teachers average Likert

Marginal distribution #2

RQ#1 Results: Teachers average Likert

3 High-F Above median 10 Average Likert Low-F Below median 8 6 Key issues Approach Context Contents 2 Reversed 0 200 50 100 150 250 F-score of items Teachers agree on the true conceptual core of QMB: Low L 1. • The use of **representations** Scattered L 2. The role of the lab classes ٠ 3. **High L** How to introduce the limitations of Classical Physics ٠ • The relevance of socioscientific issues

Marginal distribution #2

RQ#2 Instruments: interview with teachers on attitudes

After classroom implementation

RQ#2 Results: a case study

"To what extent did you stress/ involve students on..."?

The classroom implementation determined further shift towards QMB vision

Conclusions and Perspectives

RO #1 What are the **teachers' perceptions** about QMB multidisciplinary approach?

After the professional development course

Key issues & Contents	Teachers <u>accept QMB key issues</u> and contents, but conservatively don't single out them and <u>show resistance</u> to select and renounce to previous practices
Approach	Teachers mainly accept the QMB approach
Context	<u>Part of the teachers are afraid</u> that the QMB may not fit the general scopes of the Physics curriculum and that their students may fail

RO #2 How far are they prone to **accept and actuate** the QMB core concepts?

QMB interviews

Fidelity poll results

After classroom implementation

The interviews performed after the curricular implementation show <u>further acceptance and positive</u> <u>inclination</u> to actuate QMB

Next

- Full data analysis of teachers and students performances
- Deepening sequences: wave mechanics, qbits, entanglement

QMB final test